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Abstract. In the dissipative, driven standard Frenkel-Kontorova model propagating breathers exist as
attractors of the dynamics. In collisions, these excitations interact through the phonons they emit. A
possible result of a two-breather collision is a bound state of two breathers. After looking at phonons and
breather collisions, we present phenomenological results on breather bound states obtained from lattice
dynamics simulations. In particular, we find that bound states can be characterised by the distance between
the two breathers they comprise and their propagation velocity. Contrary to the single breather case, several
values of the propagation velocity are easily accessible to bound states at fixed model parameters. The
results are interpreted on the basis of the observed phonon spectra. The latter can easily be explained as
Doppler-shifted combination frequencies of breather harmonics and a discreteness-induced perturbation
frequency.

PACS. 63.20.Ry Anharmonic lattice modes – 63.20.Pw Localized modes

1 Introduction

In the second half of the past century the important role
that nonlinear excitations play in many areas of physics
became clear beyond any reasonable doubt. Solitons and
solitary waves, in particular kinks of nonlinear Klein-Gor-
don models, received most attention. The largest part of
the investigations on nonlinear excitations was done for
continua in the language of partial differential equations,
though nonlinear lattices received attention, too. For an
overview see [1, 2]. Within the context of nonlinear lat-
tices, a new type of nonlinear excitation, or specific type of
solitary wave, depending on the nomenclature one adheres
to, became prominent: the intrinsically localised mode or
discrete breather (DB). The latter expression refers to the
similarity between these nonlinear excitations of discrete
systems and breather solutions of partial differential equa-
tions (in particular sine-Gordon), which are solutions to
the nonlinear equations of motion with an internal oscil-
lation of some frequency ωb.

The most basic example of a discrete breather is a non-
linear excitation which is localised at a fixed position in
the system. Its dynamics is governed by the time evolution
of the internal degree of freedom, which can be of oscilla-
tory or rotational nature. After the first predictions [3–5]
of intrinsically localised modes, these excitations quickly
attracted much interest. There exist proofs of existence
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of breathers in both Hamiltonian [6, 7] and dissipative [8]
systems. Stability [7, 9–11] of the excitations and finite size
effects [12, 13] have been studied.

Apart from the basic DB also mobile breathers (MB),
i.e. breathers that propagate through the system, have
been found [14, 15]. As these breathers carry with them
an additional internal degree of freedom they are from the
very outset more complex objects, hinting a richer phe-
nomenology than the ‘simpler’ solitary waves. However,
much less is known about MBs than about immobile DBs.
There is no proof of existence, yet strong numerical evi-
dence that in certain systems these excitations are either
stable or extremely long-lived [16, 17]. Mobile breathers
have been found numerically both in Hamiltonian [18] and
dissipative [19] systems. Conditions for MB existence are
discussed e.g. in [20]. An interesting twist is given to the
problem of the existence of propagating localised modes
in [21], where, given the shape of such a mobile excita-
tion, suitable equations of motion (more precisely on-site
and/or interaction potentials) for a system supporting the
excitation are constructed. Some further issues, like the
question of the existence of a Peierls-Nabarro barrier for
MBs or mobility of the localised excitation resulting from
the instability of the localised mode against certain per-
turbations, are dealt with in e.g. [22, 23].

The system we will be looking at in this paper is
the discrete sine-Gordon or standard Frenkel-Kontorova
model. It describes a system of particles each of which is
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subject to a periodic on-site potential and coupled har-
monically to its nearest neighbours. In addition, we will
consider the particles to be acted on by a periodic, ex-
ternal driving force and we also include dissipation. The
equations of motion read

d2

dt2
un = − 1

2π
sin

(
2πun

)
+ C

(
un+1 + un−1 − 2un

)

− α
d
dt

un + F sin(ω0t). (1)

The un denote the deviation of particle n from its cor-
responding minimum of the on-site potential. The sys-
tem (1) supports mobile breather solutions as attractors of
the dynamics, as was found numerically in [19]. Breather
solutions can be obtained by continuation of solutions
from the uncoupled limit (C = 0), where we have a sys-
tem of uncoupled pendula. Due to the attractor property,
the continuation is easier than for Hamiltonian systems.
In the damped-driven chain, the coupling C is increased
slightly, the system is allowed to relax, then C is again in-
creased, and so on. In a Hamiltonian system, one usually
has recourse to Newton methods [24].

In [19] two types of MBs have been found to exist in
certain ranges of the coupling C: the so-called induced fast
breathers and the spontaneous slow breathers. The former
can be obtained by linearly perturbing a pinned breather
with the velocity part of a certain localised eigenvector of
the Floquet matrix. If the amplitude λ of this perturba-
tion is larger than a critical value λc, the originally pinned
breather starts to propagate along the chain. After a tran-
sient period, the velocity is independent of λ > λc. This
last statement is at variance with what occurs for Hamilto-
nian systems [18]. The spontaneous slow breathers appear
as stable solutions without requiring perturbations.

In Section 2 we look at the linearised equations of mo-
tion in order to obtain the phonon dispersion in the pres-
ence of damping. Simulations of breather-breather colli-
sions are discussed in Section 3. One of the possible results
of the interaction between the breathers during the colli-
sion is a two-breather bound state. The existence of such
states in model (1) has already been reported in [19]. In
Section 4 we present first systematic results on the prop-
erties of these special multibreather states, adding a dis-
cussion of some pertinent ideas in Section 5. Section 6
summarises our results and draws some conclusions. In-
teractions of colliding nonlinear localised excitations have
been discussed by many authors. Closest to the work we
present here is perhaps [25]. There the interaction of col-
liding breathers in a Hamiltonian sine-Gordon system very
close to the continuum case has been studied. Our model
contains dissipation and driving, the breather solutions
are attracting configurations, and we are close to the an-
ticontinuous (i.e. uncoupled, C = 0) limit; these differ-
ences obviously are pronounced. Further examples of the
interaction of nonlinear localised modes upon collision in
Hamiltonian lattices can be found for instance in [26] for
the weakly perturbed Ablowitz-Ladik chain and in [27]
for the DNLS equation. For the dissipative discrete sine-

Gordon chain under a constant applied torque, bound
states of kinks have been discussed in [28].

2 Phonons

Before discussing the interaction of breathers, in this sec-
tion we look at phonons, i.e. solutions of the linearised
equations of motion. The relevance to our problem is that
the interaction between the (nonlinear) breathers is medi-
ated by these phonons. The linearised equations of motion
are

d2

dt2
yn = − cos

(
2πun

)
yn +C

(
yn+1 +yn−1−2yn

)−α
d
dt

yn,

(2)
obtained by replacing un with un + yn in (1) and keeping
only terms of first order in yn. Moreover, we wish to look
specifically at parts of the chain far from the breather.
There, the oscillations un(t) of the breather solution are
small, and (2) simplifies to

d2

dt2
yn = −yn + C

(
yn+1 + yn−1 − 2yn

) − α
d
dt

yn. (3)

We now consider the case that the site n0 is executing the
motion yn0(t) = exp(−iωt) and make the ansatz

yn(t) = exp[(−ξ + iq)|n − n0| − iωt]. (4)

Here ξ, q are real, ξ representing an inverse decay length
and q a wavevector. Inserting (4) into (3), separating real
and imaginary parts, we arrive at [19, 28]:

1 +
1

2C

(
1 − ω2

)
= cosh ξ cos q,

αω

2C
= sinh ξ sin q. (5)

These equations can be solved exactly for the dispersion
relation under the influence of damping,

ω2 = 1

+ 2C

[

1 − cos(q)

√

1 +
α2(2C + 1)
4C2[sin(q)]2

+
α4[cos(q)]2

16C2[sin(q)]4

]

+
α2

2
[cot(q)]2. (6)

From (5) we obtain straightforwardly

ξ = arcsinh
αω

2C sin q
. (7)

For a related result see [29]. Immediately we see from (6)
that in the case α = 0 we recover the dispersion rela-
tion for the undamped case. For α not too large, the re-
lation (6) looks very much like the undamped dispersion
relation. Only close to q = 0 and q = ±π are there pro-
nounced differences, as ω(q) → 0,∞ as q → 0,±π, re-
spectively, whereas in the undamped case ω(0) = 1 and
ω(±π) =

√
1 + 4C. However, as can be derived from (7),

frequencies outside the ω-region forming the phonon band
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Fig. 1. Dispersion relation ω(q) (top) and inverse decay length
ξ(ω) (bottom) for damping α = 0.02 and coupling C = 0.890.
Note that there is a ‘window’ of low damping, which is the
analogue to the phonon band of the undamped case.

in the undamped case are subject to strong spatial damp-
ing, see Figure 1.

For later use let us recall that in the case of a moving
source of phonon radiation, the frequencies and wavevec-
tors are Doppler-shifted according to the equation

ω(q) = ωs + vsq. (8)

Here ω and q are frequency and wavevector in the reference
frame of the chain, ωs is the emission frequency in the
restframe of the source and vs is the velocity of the source
with respect to the chain. If on the other hand, there is a
wave of frequency ω and wavevector q propagating in the
chain, and we have a receiver moving at velocity vr with
respect to the chain, then the received frequency ωr is

ωr = ω − vrq. (9)

If both a moving source and a moving receiver are in-
volved, the received frequency is obtained as

ωr = ωs + q(vs − vr). (10)

Again, q is the wavevector in the chain. In the case vs = vr

the received frequency is the same as the emitted one. Note

that equation (8) has to be solved numerically for q and
ω in the case of complicated dispersion relations like (6).

3 Interaction of breathers

Two breathers approaching each other first feel the pres-
ence of the respective other one through the phonons
emitted by this other breather. Though small in ampli-
tude, if compared with the breather cores, these oscilla-
tions can affect the dynamics drastically. We have stud-
ied the collision of two ‘spontaneous slow’ breathers on
a ring of N = 1000 particles, for system parameters
α = 0.02, F = 0.02, ω0 = 0.2π, C = 0.890 and a vari-
ety of initial conditions. The 2-breather initial conditions
were constructed as follows: We started with one breather,
located at a site l0 (here ‘located’ means that the maxi-
mum elongation occurs at the site l0), obtained from the
continuation procedure described above. Then the config-
uration was allowed to evolve in time, for 1, 2, 3, and so
on periods of the driving force, in our case up to 110 pe-
riods. The time evolution of the breather is quasiperiodic,
thus after a period of the driving force the configuration
is not the same as before up to a shift in position. The
evolved breather configuration is then subject to a dis-
crete translation, bringing the site of maximum elonga-
tion back to site l0. Next, a new, ‘inverted’ configuration
uinv

n = uN+1−n, d
dtu

inv
n = d

dtuN+1−n is created; the site
of maximum elongation in the inverted configuration is
N + 1 − l0. We can now join the halves that contain the
breathers of the inverted and the original (before the time
evolution) configurations, obtaining a 2-breather initial
condition. The discreteness and the driving force limit our
choice of initial conditions. Both breathers have to be in
dynamical states corresponding to the phase of the driv-
ing force, thus allowing only time shifts of integer periods
of the driving between the breathers. Furthermore, the
configurations have to be adjusted to the lattice, so only
position shifts of integer multiples of the lattice constant
are possible. In constructing the 2-breather configuration
it is important to allow for a large initial separation be-
tween the breathers, in order to justify referring to them
as individual excitations. In our case l0 = 800, so the
initial separation was 599, considering that part of the
system along which the breathers were approaching each
other, and 401 along the other part. As up to now we
have determined the location of the breather by the site
of maximum elongation, these values can hardly be more
precise than one or two lattice constants. In the following
we are using an improved definition of the position. We
calculate the local energies

en =
1

(2π)2
[1 − cos(2πun)] +

1
2

(
dun

dt

)2

(11)

and define the position

X :=

n=2∑

n=−2
(m + n)em+n

n=2∑

n=−2
em+n

(12)
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where the site m is determined as follows: We first look
for sites where the distribution of the en has a local max-
imum above a certain threshold. The threshold serves to
exclude local maxima in the en-distribution that are of
phononic origin; the data shown in this paper have been
obtained with a threshold of 0.01. If there occurs no other
local maximum above the threshold within two sites to
the left and right, then m is the site where the maxi-
mum occurs. This seems to happen in the majority of the
cases. However, sometimes the distribution of the en can
be ‘M’-shaped, i.e. we have a sequence local maximum –
local minimum – local maximum on three adjacent sites.
In this case m is the site of the local minimum between
the two local maxima of the ‘M’. This definition of the po-
sition has the advantage that on the one hand it does not
restrict to integer values the position X of the breather,
contrary to what occurs when considering the site of max-
imum elongation as position of the breather. On the other
hand it is local enough to only involve the breather, and
not also extended phonon tails or perhaps already parts
of a second breather in the system.

A configuration of two colliding breathers basically can
evolve into 4 different types of final state: the breathers
can rebounce, one of the breathers can be destroyed, both
breathers can be destroyed, or the breathers can form a
bound state. Figure 2 shows examples of these possibili-
ties. We found that the scattering process is very sensitive
to perturbations. Gaussian white noise acting on the sys-
tem as an additional random force can change the qual-
itative outcome of a scattering process, though the noise
is so weak that no thermal fluctuations are visible in the
distribution of the en on a scale set by the peaks at the
breather cores. For identical initial configurations we have
observed reflection of the breathers, destruction and the
formation of a bound state for different realisations of the
noise.

Even without noise there are phonons in the system,
those emitted by the breathers. These phonons medi-
ate the direct breather-breather interaction, but they can
also affect the scattering process indirectly, after travel-
ling round the system (if we consider a ring) once or af-
ter being reflected from the boundaries (if we consider
free boundary conditions). These phonons will be of small
amplitude, nonetheless they can change the result of a
collision qualitatively, i.e. they can for instance cause re-
flection instead of the formation of a bound state. The
effect of these phonons can be observed if we change the
boundary conditions from periodic to free or if the size
of the system is increased. This sensitivity makes it very
difficult to study the scattering process itself, the reliabil-
ity of any approximation method being questionable. The
bound states obtained from collisions turn out to be more
robust than the process of their formation and are the sub-
ject of the next section. Before we turn to them, we would
like to mention that such a sensitive dependence of the
final state of a scattering process on the initial conditions
has been reported in various publications, for instance [25,
30–32], which deal with the Hamiltonian continuum- or
quasi-continuum case, and also in [26, 27], where lattices

Fig. 2. Scattering processes with different final states, from top
to bottom: reflection, bound state, destruction of one breather,
destruction of both breathers. The positions of the colliding
breathers were calculated according to (12). Note that the sys-
tem forms a ring, therefore the bound state leaves the frame
at the top edge and enters again at the bottom edge. In the
case of reflection, the breathers reflect a second time when they
approach each other again on the side of the ring opposite to
the site of the first reflection.
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Fig. 3. A snapshot of a bound state configuration. The elonga-
tion of the particles from the equilibrium position as a function
of the lattice site is plotted.

are addressed. We should stress, however, that due to
the fundamental differences between autonomous Hamil-
tonian systems and the dissipative driven system we study,
the nature of the possible final states is different. In our
case, all the possible final states are attractors of the sys-
tem, and the sensitivity is in the selection of the attracting
final state given certain initial conditions and/or pertur-
bations. In the Hamiltonian cases mentioned, apart from
qualitatively different final states like reflection or merging
of two colliding excitations, there can also occur sensitive
but continuous variations of for instance the velocities of
the final state excitations.

4 Bound states

From the scattering processes for the 110 initial conditions
constructed as described in the previous section we ob-
tained 56 bound states; this number includes those bound
states that were formed in a collision of two breathers
subsequent to one or several previous reflections of these
breathers. A bound state is a configuration of two breather
cores which are located at a certain distance from each
other, the region between them containing phonon radia-
tion. Also, bound states have tails, i.e. decaying phonon
radiation in front of and behind the pair of breather cores.
An example is shown in Figure 3. This structure prop-
agates through the chain at a certain velocity v. The
breather cores in a bound state continue to oscillate and
usually do so out of phase with each other. Distance and
velocity are not strictly constant as functions of time.
They oscillate around a mean value and the details of
these oscillations depend on the precise definition of these
quantities. Generally, the distance d was calculated as
d(t) = |X2(t) − X1(t)|, where X1, X2 are the positions
of the two breathers as obtained from (12). The veloc-
ity v of the bound state is v(t) = (v1(t) + v2(t))/2, with

Fig. 4. Distance-velocity chart for 56 bound states obtained
in numerical scattering experiments on a ring of 1000 particles
for α = 0.02, F = 0.02, ω0 = 0.2π and C = 0.890. The straight
line indicates the corresponding velocity of a single breather.

vi(t) = (Xi(t)−Xi(t−∆t))/∆t, i = 1, 2. Another possibil-
ity to define the velocities of the individual breathers for
instance would be to take the time derivative of the defini-
tion of the position (12) and calculate the velocity from the
configuration and velocities of the particles constituting
the chain. The differences between the various definitions
of course show that the breather is not a ‘solid’ object
propagating through the chain and interacting with other
excitations therein. This separation between the breather
and the other modes is only an approximation, though
a useful one. It, however, cannot grasp all the details of
the motion of the breather, in particular because it is not
possible to separate in a unique way the part of a config-
uration of the system which is due to the presence of a
breather and the part which is due to other modes. Thus
there is here some arbitrariness, because of which we will
be restricting ourselves to time averages of distance and
velocity.

In Figure 4 values of distance and velocity for the
bound states we have obtained in the numerical scattering
experiments are shown. The data points are grouped into
three lines of negative slope, with the exception of the
lowest distance value occuring. There are preferred val-
ues of the distance, and within one group these values are
approximately equidistant. Also, a relation between dis-
tance and velocity is evident. We note, furthermore, that
at fixed values of the model parameters (α, C, F, ω0) sev-
eral values are possible for the bound state velocity, but
only one value is easily accessible for the single-breather
velocity. The values shown in Figure 4 have been obtained
as averages over 50,000 time units, where the positions of
the breathers have been calculated from the configura-
tions every time unit, and in turn from them the values
of distance and velocity. The data shown in the figure are
for the 56 bound states found from 110 initial conditions,
without us having a possibility to predict whether a given
initial condition leads to a bound state and if so, what
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its distance-velocity pair will be. Consequently, we do not
know whether the points in Figure 4 represent all possible
bound states or whether more bound states would show up
in runs over for instance 10,000 initial conditions. A rea-
sonable guess is that the bound states we have found are
those appearing with the highest probabilities, i.e. those
with the largest basins of attraction.

The interaction between the breathers is mediated by
phonons and thus the features appearing in Figure 4 will
be connected with properties of the linear, extended exci-
tations. Therefore, we study the spectra of the oscillations
between the breather cores. We select one site on the ring
and record the oscillations of the corresponding particle
as it is passed by the bound state. Then, the time inter-
val of the oscillation caused by the phonons in the region
between the breather cores is subject to a Fast Fourier
Transform (FFT). The lines of the spectra are the basic
driving frequency ω0, present everywhere in the chain, and
phonons the frequencies of which are obtained by Doppler-
shifting with velocity v frequencies 3ω0 + 2πvn, n integer.
The frequency 2πv arises because the propagation of the
configuration along the chain amounts to a perturbation
of frequency 2πv (the lattice constant is 1). The frequen-
cies to be shifted are combination frequencies of the third
harmonic of the driving force with this frequency. As for
the Doppler-shifts, which also occur because of the trans-
latory motion of the bound state, we have to take into
account the following: Since we are looking at the region
between the breather cores, one of the cores emits the
phonons in question in the direction of the motion, the
other in the opposite direction. So one given frequency
turns into two, because it is shifted both to a higher and a
lower value. The Doppler-shifted frequencies can easily be
calculated numerically. In Figure 5 the calculated values
are compared with the spectra determined by FFT. As we
can see, the phonon frequencies are well reproduced by the
values obtained from the Doppler effect. Note that some
minor lines do not stem from shifts of 3ω0+2πvn but from
shifts of ω0+2πvn. Due to the ω-dependence of the inverse
decay length ξ (see Fig. 1), frequencies in the vicinity of
3ω0 = 0.6π ≈ 1.885 can propagate under comparatively
weak damping, i.e. ξ is small and thus their decay length
is large. Frequencies close to ω0, on the other hand, are
subject to much stronger damping. The phonon frequency
a breather receives is equal to the emitted one, according
to equation (10), as the two breathers in a bound state
fulfil vs = vr = v.

The phonons incident on a breather exert an additional
force on the breather, which, as our numerical results
show, can change its velocity. If, for a pair of breathers,
these changes are such that the resulting velocities are
equal, we observe the formation of a bound state. The ne-
cessity of the mutual influence of the breathers is clearly
shown by the following observation from simulations: If
one half of a bound state is replaced with a homogeneous
configuration, leaving only one breather core in the sys-
tem, this configuration evolves to a single breather. Its
velocity is equal to the value indicated in Figure 4 for
a single breather, i.e. the changes in the velocity cannot

Fig. 5. Spectrum of the particle oscillations for one of the
bound states (see text). Logarithm of the FFT output as a
function of ω. The bottom panel is a zoom of the top one.
The straight lines in the lower panel indicate the ω-values in
the predicted spectrum (Doppler shifts of 3ω0 + 2πvn). The
spectra of the other bound states have an analogous structure.

persist without the second breather. Thus a bound state
can be interpreted as a pair of single breathers under an
additional force created by the respective partner of each
breather.

We have performed a continuation of a bound state
with respect to the coupling C. Results are shown in Fig-
ure 6. We first look at the distance. In the first series
of the continuation we started at C = 0.89 on the lower
of the two branches shown and continued both to higher
and lower values of the coupling in steps of 0.001 and a
relaxation period of 5000 time units after each step. At
C = 0.894 the system jumped to the upper branch, which
seems to be more stable in this parameter regime. We ob-
tained the part C > 0.894 of the lower branch by a more
careful simulation, using relaxation times of 5000 time
units and C-steps of 0.0001. Despite this, it became in-
creasingly difficult to follow the lower branch to higher
values of the coupling, therefore we stopped. The part
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Fig. 6. Results of the continuation of a bound state with
respect to the coupling C. The other parameters have been
α = 0.02, F = 0.02, ω = 0.2π. Top: The distance as a function
of C. Bottom: The velocity as a function of C. (+) refers to
the lower, (×) to the upper branch of the top panel.

of the upper branch below C = 0.894 was obtained by
continuing downwards from C = 0.896. The existence of
several branches (many more than just two) can be ex-
pected, because one branch corresponds to only one of
many bound states at a fixed value of C, see Figure 4.
For both branches the bound state became unstable after
a number of C-steps. This indicates that despite the re-
laxation time of 5000 time units, the configurations accu-
mulated perturbations, which at a certain level destroyed
the bound state. In this case the last stable configuration
was allowed to evolve in time over 50,000 time units at its
corresponding value of C and we then used the resulting
configuration as initial one for further continuation.

The discreteness of the system (lattice constant 1) is
reflected in the tiny steps occuring whenever the distance
has increased by 1. The same ‘periodicity’ shows up in the
velocities. We observe a jump when the distance jumps,
followed by a gradual change in the velocity, in most cases
a decrease when C increases.

Fig. 7. Distance-velocity chart like Figure 4 (also same para-
meters) however for 19 bound states in a velocity range around
the velocity of an induced fast breather. The latter value is
indicated by the straight line.

For large C-values the observed patterns in the dis-
tance and the velocity graphs become irregular. This indi-
cates a reduction of bound state stability as the coupling
approaches the value Cpin ≈ 0.96 above which single brea-
thers were found to be pinned [19]. Likewise, the continu-
ation to lower values of C terminates near C = 0.879, the
value below which single spontaneous slow breathers have
not been found, and where, according to our numerical
results, the bound state becomes unstable.

Ending this section we want to mention that we also
have found bound states of breathers in a velocity range
around the velocity of an induced fast breather, see Fig-
ure 7. We obtained one such bound state as a result of
noise acting on a ‘slow’ bound state. The other bound
states were obtained by manipulating this bound state
configuration, for instance by replacing the part of the
configuration between the cores with a homogeneous one.

5 A conjecture on ILM binding

As stated in Section 3, not every collision of two breathers
leads to a bound state. Furthermore, Figure 4 shows that
the values of distance and velocity are not arbitrary. In this
section we want to discuss some ideas connected with these
observations. We have already pointed out above that the
interaction between the ILMs is mediated by phonons,
which can effect a change of the ILM velocity. It is natural
to expect that the size and sign of this change will depend
on the phonon parameters, i.e. frequency, phase (relative
to the ILM oscillations) and amplitude. Figure 5 shows
that there are many phonon frequencies that can play a
role. For the interaction process in general, none of these
frequencies can in principle be ruled out, in particular if
we take into account the sensitivity of the scattering to
perturbations. However, if we consider bound states, the
following conclusions are plausible: In the rest frame of
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Fig. 8. The phases in units of 2π for the bound states of
Figure 4. (+) : δ1, (×) : δ2, (◦) : δ2 − δ1.

the bound state, the dominating contribution to the ILM
dynamics is periodic with a frequency spectrum consisting
of ω0 and its higher harmonics; the additional frequencies
arising from the motion of the lattice through the bound
state are perturbations. The bound state is an attracting
steady state configuration of the system and this suggests
that the phonon frequencies involved in the binding share
the periodicity of the bound ILMs (rather than connect-
ing the binding to phonons the frequencies of which are
incommensurate with the ILM oscillation). This leaves us
with ω0 and its higher harmonics. From the behaviour of
the inverse decay length ξ (see Fig. 1) it is evident that
only phonons with frequencies close to 3ω0 can propa-
gate over larger distances. Therefore we conjecture that
phonons with frequencies (in the restframe of the lattice)
which are Doppler-shifts of 3ω0 are mainly responsible for
ILM binding.

From the bound states we have obtained we can
evaluate the corresponding phonon phases. In order
to do so, let us introduce some quantities. Out of the
frequency 3ω0 by Doppler-shift we obtain two frequencies,
ω1 > 3ω0 > ω2, with corresponding wavevectors q1 > q2

and wavelengths λ1 < λ2. With d the distance between
the breather cores, we can write

q1d = 2πm + δ1, q2d = 2πn + δ2 (0 ≤ δ1,2 < 2π) (13)

where m, n are integers, and δ1,2 the phase shifts nec-
essary for a stable bound state. Combining the two
equations we find

d =
2π(m − n)

q1 − q2
+

δ1 − δ2

q1 − q2
= λ

(
m − n − δ2 − δ1

2π

)
(14)

with λ = 2π/(q1 − q2). The values for the phases we have
obtained for the bound states of Figure 4 are shown in
Figure 8. Furthermore it turns out that m−n is constant
within one group in Figure 4, in fact it is constant, m−n =
5, for all bound states in the figure except for the lowest
distance shown, where m − n = 4. Within one group the

phase difference δ2 − δ1 is also constant, see Figure 8.
The changes in the distance within one group thus are
entirely due to changes in λ. If the velocity decreases, so
does q1− q2, and therefore λ and in turn also the distance
d increase.

The results clearly confirm our expectation about
the phases, as Figure 8 gives the phase pertinent to
each distance-velocity pair. Arbitrary values of the phases
δ1, δ2 on the other hand would, according to (13) and (14),
evidently lead to arbitrary distance-velocity combinations,
in contradiction to our numerical results.

Besides the fact that it is trivial, the expectation on the
amplitude is also evident. First from Figure 2, where we
see that during the initial part the excitations propagate
apparently without disturbing each other. Second from
the fact that according to equation (14) at fixed q1, q2, δ1

and δ2 changes to the integer quantity m − n should give
a family of bound states the members of which share the
same velocity but differ in the distance. Due to the non-
vanishing decay length ξ, varying distances between ILMs
in a bound state result in varying amplitudes of the in-
cident binding-mediating phonons. The results show that
for the bound states we have studied, only two values for
m−n appear, namely 5 and 4, the former moreover being
strongly preferred.

We have similarly analysed the bound states obtained
in the C-continuation, Figure 6; the results are shown in
Figure 9. For the lower branch, from equations (13), we
have (m, n) = (53, 48), for the upper branch (m, n) =
(57, 52), and (m, n) = (58, 53) for C > 0.947. It will be
observed that here also m − n = 5 in all cases.

6 Summary

In this article we have presented phenomenological results
on breather bound states. These special multibreather sta-
tes can be created in breather-breather collisions and turn
out to be attractors of the system. Two major charac-
teristics of such a bound state are the distance between
the two breather cores and the propagation velocity of the
bound state. According to data obtained from simulations
of the lattice dynamics, these two quantities are clearly
related. We have interpreted a bound state as a pair of
single breathers, where each breather, in addition to the
spatially homogeneous external driving force, also is sub-
ject to a force originating from the phonons emitted by the
other breather in the pair. This additional force changes
the velocity of the breather. We have conjectured that the
binding between the ILMs in the bound state is effected by
the phonons that are the Doppler-shifted radiation emit-
ted by the third harmonic of the ILM oscillation. Based
on this conjecture we have analysed the phase relation be-
tween these phonons and the ILM oscillation and found
that for given bound state characteristics (distance and
velocity) a particular value of this phase is necessary in
order to have a bound state. The relevance of the phonon
amplitude in this context has also been confirmed.

An important observation is that for a given set
of values of the model parameters (coupling, damping,
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Fig. 9. The phases for the continuation in the coupling: δ1

(top) and δ2 (middle). The phase differences δ2 − δ1 are shown
in the bottom panel. Again, (+) refers to the lower and (×) to
the upper of the two branches shown in Figure 6 (top).

amplitude and frequency of the driving) there are several
easily accessible values of the velocity of a bound state, but
usually only one value of the velocity of a single breather.
This indicates that the formation of breather bound states
can have important implications for the transport proper-
ties of the system.
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